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A B S T R A C T   

With the proliferation of social media, the detection of fake news has become a critical issue that poses a sig-
nificant threat to society. The dissemination of fake information can lead to social harm and damage the cred-
ibility of information. To address this issue, deep learning has emerged as a promising approach, especially with 
the development of Natural Language Processing (NLP). This study introduces a novel approach called Graph 
Global Attention Network with Memory (GANM) for detecting fake news. This approach leverages NLP tech-
niques to encode nodes with news context and user content. It employs three graph convolutional networks to 
extract informative features from the news propagation network and aggregates endogenous and exogenous user 
information. This methodology aims to address the challenge of identifying fake news within the context of social 
media. Innovatively, the GANM combines two strategies. First, a novel global attention mechanism with memory 
is employed in the GANM to learn the structural homogeneity of news propagation networks, which is the 
attention mechanism of a single graph with a history of all graphs. Second, we design a module for partial key 
information learning aggregation to emphasize the acquisition of partial key information in the graph and merge 
node-level embeddings with graph-level embeddings into fine-grained joint information. Our proposed method 
provides a new direction in news detection research with a combination of global and partial information and 
achieves promising performance on real-world datasets.   

Introduction 

A developing interest identified with online interactions on social 
media has drawn in numerous content participants, including the 1.09 
billion mobile internet users in China, with 670 million photos and 100 
million short videos shared daily in 2021 on Tencent WeChat (Institute, 
2022), whereas misinformation is intentionally generated to agitate the 
public or manipulated several times in the process of widespread 
dissemination on social media platforms and other online channels 
(Gorrell et al., 2018; Gupta et al., 2012; Zhou & Zafarani, 2018). Mali-
cious intent users use multimedia as a tool to proliferate fake news, 
which not only misleads public opinion but also puts social events at 
risk, such as incitement of violence or election interference, due to the 
low cost of maintaining social media as well as platform access, which 
results in significant challenges in the field of fake news detection 
(Bastick, 2021; Lazer et al., 2018; Vosoughi et al., 2018). Fake news can 
span a range of topics, styles, and platforms, and is characterized by 
various entities, such as the news article, the creators and spreaders of 
the news, and the surrounding social context. The endogenous and 

exogenous information conveyed by these aspects of news are crucial for 
accurate news characterization and play a pivotal role in the detection of 
false news (Wang et al., 2020; Zhang & Ghorbani, 2020). 

One approach to mitigating the destructive impact caused by 
misinformation is expert-based fact-checking, which is labor-intensive 
and time-consuming. To break through the limitations of this manual 
approach, some previous researchers tried to program a range of 
handcrafted characteristics that were fed into a machine learning model 
to discern fake news attributed to technological advancement (Gupta 
et al., 2012; Kaur et al., 2020). However, fake news can be created and 
disseminated in various forms, including text, images, and videos, and 
can quickly evolve and adapt to new platforms and contexts (Khattar 
et al., 2019; Singhal et al., 2019). Furthermore, it can be difficult to 
distinguish fake news from genuine news, especially when it is 
well-crafted and strategically targeted (Zhang & Ghorbani, 2020). 
Detecting fake news has thus attracted widespread attention from re-
searchers across various disciplines. Early research with conventional 
machine learning methods has yielded certain gains for the identifica-
tion of fake news, but these methods often require hand-crafted features 
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as the basis for detection, which makes it difficult to capture high-level 
representations of the news information, making the model’s detection 
performance unable to achieve the desired results (Mridha et al., 2021; 
Wani et al., 2021). Deep learning, with its capacity to autonomously 
acquire meaningful high-level feature representations from data, has 
emerged as a promising approach for addressing this challenge (Monti 
et al., 2019; Wani et al., 2021). 

Traditional deep learning techniques are commonly used for unim-
odal fake news detection, with a focus on the textual content of the news, 
such as the news headline and its corresponding subject content (Dha-
wan et al., 2022; Palani et al., 2022; Singh et al., 2021; Singhal et al., 
2019). Content-based approaches for modeling the flow of information 
within fake news texts have predominantly relied on recurrent and 
convolutional neural networks (Goldani et al., 2021; Kaliyar et al., 2020; 
Yang et al., 2018). Nevertheless, it’s important to acknowledge that 
these approaches might exhibit certain limitations in the domain of fake 
news detection. Recurrent and convolutional neural networks excel at 
handling sequential and spatial information, yet they might struggle to 
adeptly grapple with the intricacies of multi-source, multimodal data 
often encountered in fake news scenarios (Chen, 2015; Goldani et al., 
2021). The intricacies of contextual and nuanced features, particularly 
within extended texts, and the complex non-linear traits of fake news 
could pose challenges that conventional feature extraction methodolo-
gies may inadvertently overlook. The development of Natural Language 
Processing (NLP) (Oshikawa et al., 2018; Z. Zhou et al., 2019) and 
Computer Vision (CV) (Kaur et al., 2020) has facilitated the use of 
multimodal features for the detection of fake news (Dhawan et al., 
2022). These features comprise a range of information types, including 
news content, social media content, user profiles of fake news creators 
and propagators (Rangel et al., 2020), and audience demographics 
(Zhou & Zafarani, 2018). These diverse data types are encoded in 
various formats, such as textual and visual modalities, and are dissem-
inated across social media networks (Khattar et al., 2019; Nakamura 
et al., 2019). The effective processing of these data and the accurate 
detection of fake news require sophisticated techniques and algorithms 
that can handle the complexity and scale of the data (Figueira & Oli-
veira, 2017; Gupta et al., 2012). While methods enhanced by NLP 
techniques may excel at extracting semantic information (Aggarwal 
et al., 2020; Altınel & Ganiz, 2018), they often fall short of capturing the 
structural information inherent in the dissemination of fake news across 
social networks. This limitation stems from their focus on text-based 
content analysis, leaving out critical insights from the network’s topol-
ogy and dynamics (Malhotra & Vishwakarma, 2020; Mridha et al., 
2021). 

Recent research has demonstrated the superior performance of 
Graph Convolutional Network Networks (GCNs) in fake news detection 
compared to traditional machine learning methods (Figueira & Oli-
veira, 2017; Varlamis et al., 2022) due to their ability to capture both the 
structural and semantic features of news articles and social media posts. 
And GCNs can be used to incorporate user information, such as user 
interactions, user profiles, and social network connections, to further 
improve the accuracy of fake news detection (Liu & Wu, 2018; Shu et al., 
2020a). Previous research has shown that fake news tends to spread 
faster and wider than real news (Pierri & Ceri, 2019), and users who 
spread fake news are often more active and have higher centrality in the 
network (Gupta et al., 2022). Specifically, GCNs can incorporate such 
information into the model, providing a more fine-grained analysis of 
the dissemination dynamics of fake news by considering the interactions 
between users and their connections in the network. Furthermore, GCNs 
can capture the underlying factors that contribute to the spread of fake 
news, such as user beliefs, social influence, and network structure 
(Oshikawa et al., 2018; Varlamis et al., 2022; Zhou & Zafarani, 2018). 
However, these investigations have primarily concentrated on localized 
information within the distribution network of fake news, encompassing 
tweets, user profiles, and the underlying network structure (Vosoughi 
et al., 2018; Vziatysheva, 2020). The uniform global structural 

relationships that exist throughout holistic networks have been over-
looked, and this broader contextual information holds significance for 
the extraction of structural features crucial in news detection. 

In response to the limitations and obstacles observed in prior 
research, we have introduced a novel Global Attention Module with 
Memory within our framework. This module possesses the capability to 
identify the alignment between network structures through an attention 
mechanism and maintain this understanding through a memory mech-
anism. Consequently, it acquires an encompassing representation of the 
entire graph, facilitating enhanced fake news detection at a more pro-
found semantic level. Simultaneously, the attention mechanism 
embedded in this module is adept at learning the global structural in-
formation of the fake news dissemination network, thereby bolstering 
the capacity to capture the overarching essence of fake news. Empirical 
studies from a sociological and psychological perspective have revealed 
that user preferences and online news consumption behaviors are not 
only influenced by endogenous preferences but also by exogenous 
contents present within social communication networks (Shu et al., 
2019a). In addition, the veracity of news also has a significant impact on 
the structure of the social propagation network of news (Liu & Wu, 
2018; Shu et al., 2020a), and aggregating localized information within a 
news communication network will also be an important component of 
fake news detection. In this study, we propose another Partial Key 
Message Learning strategy that focuses on aggregating the endogenous 
preferences of users within the social media communication network 
and the exogenous content that exists in the social communication 
network, aiming to better integrate the information within the network, 
and the news content is also an important piece of information for 
identifying fake news dissemination. The main contributions of this 
work are as follows:  

• We employ pre-trained word embeddings, a feature engineering 
technique of NLP, to encode and embed news content, user profiles, 
and user-generated content in heterogeneous networks to construct a 
Chinese corpus dataset for fake news detection.  

• We harness the capabilities of three advanced and widely recognized 
GCNs to extract pertinent features and amalgamate endogenous user 
preferences with exogenous contextual data. This strategic approach 
is aimed at enhancing the overall efficacy of fake news detection.  

• We present a groundbreaking approach for fake news detection 
named the Graph Global Attention Network with Memory (GANM). 
The GANM approach combines two distinct strategies: the Global 
Attention Module with Memory for learning and retaining global 
structural information and the Partial Key Message Learning module 
for extracting essential messages. Our proposed approach was 
applied to real-world datasets, yielding promising results.  

• We obtained quantitative analysis results on the significance of local 
and global information for fake news detection by comparing abla-
tion experiments. These experiments revealed that local and global 
information play distinct roles in model learning due to their 
inherent differences. 

Related work 

Deep learning approach for fake news detection 

Many conventional machine learning techniques have been exten-
sively employed to identify false information propagation online, 
including Support Vector Machine (SVM) (Hussain et al., 2020), Naive 
Bayes (NB) (Aphiwongsophon & Chongstitvatana, 2018), and Random 
Forests (RF) (Basu et al., 2022). Nevertheless, these methods predomi-
nantly concentrate on feature extraction from news content, encom-
passing source, headline, body text, image, or video. Misinformation 
spreaders can exploit this reliance on textual news to undermine ma-
chine learning-based models (Mridha et al., 2021). Moreover, the ma-
jority of traditional machine learning methods necessitate manual 
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feature engineering, impeding the extraction of high-level feature rep-
resentations and thereby leading to inefficiency in their approaches 
(Baarir & Djeffal, 2021; Zhang & Ghorbani, 2020). 

With the recent advancements in deep learning technology, algo-
rithms such as recurrent neural networks (RNN) and autoencoders have 
emerged as powerful tools for natural language embedding, memorizing 
essential semantic sequences, and capturing underlying semantic re-
lationships, resulting in high-level feature representations (Choudhary 
& Arora, 2021). Consequently, deep learning algorithms have gained 
popularity in online fake news detection, particularly RNN and 
CNN-based deep learning methods. Bahad et al. (2019) proposed a fake 
news detection model based on bi-directional LSTM-recurrent neural 
networks, and their experimental results showed that the bi-directional 
LSTM-RNN model outperformed the uni-directional model. Shu et al. 
(2019b) applied a Bi-directional GRU (Bi-GRU) architecture and intro-
duced a sentence-comment co-attentive sub-network model called 
dEFEND (interpretable fake news detection), which leverages news 
content and user comments for fake news detection. Kumar et al. (2020) 
introduced a Multi-level Convolutional Neural Network (MCNN) that 
incorporates local convolutional features and global semantic features to 
effectively capture semantic information in article text for classifying 
news as fake or genuine. The CNN and RNN-based methods do not rely 
on manually created text features, enabling them to capture news 
contextual information and semantic structure effectively, making them 
viable solutions for fake news representation and detection. Unlike RNN 
or CNN, the attention mechanism preserves word dependencies in a 
sentence regardless of their distance from each other. Lu and Li (2020) 
developed a novel model named GCAN for predicting fake news based 
on source tweets and their propagation-based users through a unique 
co-attention network mechanism that combines source-interaction 
co-attention representation, source-propagation co-attention represen-
tation, and GRU-based propagation representation. Although these deep 
learning-based methods yield high-level feature representations, their 
feature sources mainly focus on the news content, overlooking joint 
features related to users, dissemination networks, and social contexts. 
This vulnerability allows creators of fake news to exploit the system for 
targeted attacks, making it necessary to reduce the detection model’s 
dependency on news text. 

Graph Neural Networks (GNNs) are a novel technique that applies 
deep learning algorithms to graph structures. The unique structure of 
GNN holds the potential to unify content-based, communication-based, 

and social context-based approaches (Monti et al., 2019). GNN-based 
models can achieve comparable or higher performance than modern 
methods that do not rely on textual information (Han et al., 2020). 
Monti et al. (2019) proposed a geometric deep learning-based approach 
for fake news detection that utilizes a primarily GCN-based end-to-end 
network framework consisting of two graph convolutional layers and 
two fully connected layers to integrate news-related information, such 
as user profiles, user interactions, network structure, dissemination 
patterns, and content, through the construction of heterogeneous graph 
data. Bahad et al. (2019) introduced a novel bi-directional graph model 
called Bi-Directional Graph Convolutional Networks (Bi-GCN), which 
explores two aspects of features by manipulating the top-down and 
bottom-up propagation of rumors. It employs GCN with top-down rumor 
propagation-directed graphs to learn the pattern of rumor propagation 
and GCN with opposite rumor diffusion-directed graphs to capture the 
structure of rumor diffusion. On the other hand, Van-Hoang et al. (2020) 
utilized GraphSAGE as the core module of graph convolutional opera-
tions for inductive representation learning. Compared with transduction 
models (e.g., GCN, GAT, etc.), GraphSAGE does not require maintaining 
all nodes, making it scalable during training and efficient during infer-
ence without re-processing the entire graph. This approach enables more 
efficient news processing and detection, especially when dealing with 
larger spreading networks. Wei et al. (2021) proposed a novel 
edge-enhanced Bayesian graph convolutional network (EBGCN) to 
capture robust structural features by employing a Bayesian approach to 
adaptively think about the reliability of potential relationships between 
users in a propagation network. Furthermore, the advancement of NLP 
technology has introduced novel solutions to the realm of fake news 
detection. Many researchers have synergistically harnessed GNNs and 
NLP techniques, paving the way for cutting-edge advancements in this 
domain. Sun et al. (2022) leverage BERT (Devlin et al., 2018) to extract 
semantic information from textual content. They incorporate Graph 
Adversarial Contrastive Learning (GACL) into the loss function to 
discern disparities between dialogue threads in the same and distinct 
categories. Additionally, they introduce an Adversarial Feature Trans-
formation (AFT) module to create conflicting samples, compelling the 
model to unearth event-invariant features. Tian et al. (2022) harnessed 
BERT to bolster semantic analysis, employed Transformer for capturing 
the significance of attentional connections among tweets, and integrated 
the Graph Attention Network (GAT) to gather graph structural insights. 
This amalgamation resulted in the development of a comprehensive 

Fig. 1. Overview of the heterogeneous graphical representation of news propagation networks. The news propagation networks are represented as a tree graph, 
where the red node is the root news node of the tree graph, the other leaf nodes represent the tweeting users, the retweeting users, and the replying users, while the 
edges of the graph represent the reposting behaviors of the users towards the news, the commenting behaviors of the news, and the replying behaviors of 
the comments. 
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DUCK model. While these studies have made significant contributions 
and demonstrated commendable performance, they primarily concen-
trated on local information, specifically intra-graph information, when 
gathering insights about communication structures. However, they 
largely neglected the broader perspective of global structural informa-
tion. It is this gap that our current study endeavors to bridge. Our 
research strives to incorporate global information spanning multiple 
news stories into the detection process. This ensures that the assessment 
of news authenticity isn’t confined solely to the acquisition of local 
information. 

News propagation networks 

With the increasing prevalence of social media platforms as a means 
for news propagation, the traditional media is no longer the sole source 
for such information, leading to a transformation in the way news is 
disseminated and an increase in research on the news propagation 
network (Martens et al., 2018). This network is typically modeled as a 
heterogeneous graph consisting of nodes for news articles, users, and 
replies, where the relationships between these nodes are defined by the 
behavior of users in terms of tweeting and retweeting. When examining 
the dissemination of fake news, this network can be viewed as a het-
erogeneous graph, with a root node representing the news article and 
leaf nodes representing tweet nodes, which correspond to the users 
disseminating the news. The leaf nodes of the tweet nodes represent the 
retweet users. The news propagation network can be represented in the 
form of a heterogeneous graph, as shown in Fig. 1. 

The news propagation network serves as a valuable source of infor-
mation within the realm of fake news detection. The feature sources of 
this network can be categorized into two distinct groups: endogenous 
and exogenous information (Feng, 2022; Zhou & Zafarani, 2018; X. 
Zhou et al., 2019). Endogenous information is concerned with the in-
teractions and relationships that occur between news nodes, tweeting 
nodes, and retweeting nodes, as well as aspects such as the title and 
content of the news article, user tweeting behavior, and comment con-
tent. On the other hand, exogenous information pertains to contextually 
relevant information from social media platforms that is not easily 
encoded in machine learning models, including details related to users’ 
social network relationships, personal information, and geographic 
location. Together, these various sources of information provide a 
multifaceted framework of clues and support for the effective detection 
of fake news (Dou et al., 2021; Shu et al., 2020b). Therefore, by utilizing 
the characteristics of news propagation networks and advanced machine 
learning methods such as graph neural networks, the detection and 
identification of fake information can be effectively achieved. Analyzing 
and modeling news propagation networks can reveal the propagation 
pathways and influence of false information, which is of great signifi-
cance for developing effective strategies for preventing the spread of 
fake information. 

Graph convolutional networks 

Graph convolutional networks (GCNs) are a class of neural networks 
designed to process data represented in graph structures. GNNs are 
capable of learning both node-level and graph-level representations by 
iteratively aggregating the information of the neighbors of each node in 
the graph. The key operation in GNNs is the graph convolution opera-
tion, which is used to propagate node-level information to higher-level 
graph representations. There are various types of GCNs, each with its 
own unique architecture and set of parameters. Many popular GCNs are 
widely employed in scientific research and practical applications, 
including Graph Convolutional Network (GCN) (Kipf & Welling, 2016), 
Graph Attention Network (GAT) (Velickovic et al., 2017), and GraphS-
AGE (SAGE) (Hamilton et al., 2017). 

GCN is one of the most widely used types of GCNs. GCN employs a 
spectral graph convolution operation to learn node embeddings by 

leveraging the graph Laplacian matrix, which encodes the graph struc-
ture. The convolutional operation is performed by multiplying the node 
feature matrix with the graph Laplacian, followed by a non-linear acti-
vation function. For a node i, its (l + 1)-th layer feature representation 
h(l+1)

i can be obtained by taking a weighted average of the l-th layer 
feature representations h(l)

j of its neighboring nodes j. Specifically, the 
convolution operation formula of GCN is: 

h(l+1)
i = σ

(
∑

jϵN(i)

1̅̅̅
̅̅̅̅̅

didj
√ h(l)

j W(l)

)

(1)  

where N(i) denotes the set of first-order neighboring nodes of node i, di is 
the degree of node i, W(l) is the learnable weight matrix of the l-th layer, 
and σ is the activation function. 

GAT employs an attention mechanism to learn node embeddings. 
The attention mechanism allows the model to learn to assign different 
weights to the neighboring nodes when computing the final node rep-
resentation, based on the similarity between the nodes. The GAT 
convolution operation can be written as: 

h(l+1)
i = σ

(
∑

jϵN(i)

α(l)
i,j h(l)

j W(l)

)

(2)  

where α(l)
i,j denotes the attention coefficient between nodes i and j in the 

l-th layer. The other parameter symbols have the same meaning as those 
expressed in the previous GCN convolution operation formula. 

GraphSAGE is a GNN model that employs a graph-level aggregation 
function to compute node embeddings. SAGE operates by iteratively 
aggregating the feature information of neighboring nodes to compute a 
node’s embedding. The key innovation in SAGE is the use of a learnable 
aggregator function that can be trained end-to-end with the rest of the 
model. The SAGE convolution operation can be written as: 

h(l+1)
i = σ

([

h(l)
i ‖

1
|N(i)|

∑

jϵN(i)

h(l)
j

]

W(l)

)

(3)  

where ‖ denotes the vector concatenation operation. The other param-
eter symbols have the same meaning as those expressed in the previous 
GCN and GAT convolution operation formulas. 

Problem statement 

In the realm of fake mews detection, let G = {G1,G2,⋯,GN} denotes 
the dataset, where Gᵢ corresponds to the i-th propagation network of 
news, and N represents the total number of events encompassed within 
the dataset. Specifically, Gi = {Xi,Ei} signifies the node feature set Xi =

{ri,xi
1,xi

2,⋯,xi
ni − 1}, while a set of edges Ei = {ei

sd
⃒
⃒s, d= 1,2,⋯, ni} cap-

tures the relationships between responded posts and retweeted or 
responsive posts within Gi. Here, ri signifies the embedding of the root 
node, xi

j embodies the embedding of the j-th leaf node, and ei
sd charac-

terizes the interaction between the s-th and D-th nodes. In particular, an 
edge ei

s→ei
d is present if the D-th node responds to the s-th node. The 

parameter ni denotes the total count of posts in Gi. Furthermore, the set 
of edges Ei is concisely portrayed using an adjacency matrix 
Ai ∈ {0,1}ni×ni , where 

ai
sd =

{
1, if ei

ds ∈ Ei

0, otherwise
.

Moreover, each distinct graph Gi corresponds to an associated 
ground-truth label yi ∈ {0,1}. Specifically, yi = 1 when the related news 
is confirmed as true, while yi = 0 if the news is ascertained to be false. 
The core aim of the news detection task is to formulate a classifier 
function f(G)→Y. In this context, G signifies the ensemble of news 
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within the dataset, while Y represents the set of corresponding ground- 
truth labels. The objective of this classifier function is to predict the label 
of a given event by considering a diverse array of factors, encompassing 
textual content, user profiles, and the structural propagation patterns 
formed by the interconnected posts associated with that particular 
event. 

The proposed approach: GANM 

Our proposed Graph Global Attention Network with Memory 
(GANM) is an end-to-end neural network aimed at enhancing the 
comprehension of global graph structure while capturing essential local 
information for precise graph classification tasks. An overview of the 
GANM is presented in Fig. 2. Initially, we embed features of different 
node types into the graph, which serves as input to a graph convolu-
tional network responsible for feature convolutional embedding. Sub-
sequently, the resultant convolutional node features are fed into our core 
modules, the Global Attention Module with Memory and the Partial Key 
Message Learning module. The Global Attention Module with Memory is 
responsible for capturing the global structural information dependency 
and storing it in the memory component, and the Partial Key Message 
Learning is responsible for learning the key partial messages. The out-
puts of the two modules are fused to produce a comprehensive feature 
vector. Lastly, the fully connected layers module reduces dimensionality 
and produces the output essential for graph classification. 

Node-level embedding and graph-level embedding 

As previously elucidated, the node features within the graph stem 
from the NLP encoding process. Through the establishment of edges 
interconnecting nodes, the graph G(V, E) is constructed. This collection 
of graphs is denoted as {G1,G2,⋯,Gn}. Three classical graph convolution 
methods GCN, SAGE and GAT are applied in node-level embedding, 
which can be simply expressed as: 

X = GCNs(G(V,E)) (4)  

where GCNs(⋅) denotes a composite network function encompassing 

multiple layers of graph convolution, and The resultant feature matrix X 
encapsulates the outcome of multi-layer graph convolution. Further 
compression of the matrix data is performed below. Global pooling is a 
type of aggregation for graph-level embedding operation that combines 
information from all nodes in a graph into a single vector. This operation 
is typically used as the final layer of a GNN to produce a fixed-size 
feature vector that can be used for downstream tasks such as node 
classification or graph classification. Formally, let X ∈ RN ×F be the 
matrix of node features for a graph with N nodes and F features per node. 
The goal of global pooling is to produce a fixed-size feature vector h2 ∈

RF that summarizes the information in X. The global mean pooling 
operation can be written as: 

hagg
2 =

1
ni

∑

j∈Gi

Xij (5)  

where Gi signifies the graph to which node j belongs, Xij represents the j- 
th embedded feature vector pertaining whole graph Gi after undergoing 
convolution with GCNs, and ni denotes the total number of all nodes in 
the graph Gi. 

Two strategies: global attention module with memory and partial key 
message learning 

The process of embedding raw node information and constructing a 
graph is typically succeeded by the application of GCNs. These networks 
embed the node features of the graph and establish a hierarchical rep-
resentation. After pooling, the resulting feature vector h2 encapsulates 
fundamental characteristics of the graph. To engender a more compre-
hensive and valuable feature representation of the graph, we employ 
two distinct strategies with respect to the vector h2. 

The first strategy harnesses an attention mechanism to extract se-
lective information from both the current and historical input graphs. 
We term this approach the "Global Attention Module with Memory," 
which can be conveniently abbreviated as the "Global Memory Module." 
In this approach, a fixed set of attention weights is computed and iter-
atively updated within the context of a Gated Recurrent Unit (GRU) cell. 

Fig. 2. An overview illustration of the GANM framework. The colored rectangles represent different tensors, while the solid black arrows depict the flow to the next 
network layer. The dashed arrows indicate tensor migration or duplication. The notes below show the main operations of the GANM framework. 
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These weights serve as a form of global attention that evaluates the 
corresponding historical graph features. This method facilitates the 
focused integration of the most informative aspects of each graph into 
the overall feature representation. 

The second strategy involves amalgamating information derived 
from the attention mechanism with data pertaining to key nodes or core 
nodes within the present graph. Specifically, we concatenate attention- 
weighted historical graph features with the current graph features and 
employ fully connected layers to discern the importance of the features 
associated with key nodes. This fusion process not only captures the 
intrinsic attributes of the current graph but also captures the shared 
patterns and variances that exist across multiple graphs. The outcome is 
a more holistic and informative feature representation that is conducive 
to the demands of graph classification tasks. 

Global attention module with memory 
In our proposed approach, the inclusion of macroscopic information 

from all graphs, in conjunction with the intrinsic data contained within 
the graphs (i.e. node features and graph structure), constitutes a vital 
feature within our methodology. However, the direct simultaneous 
input of all graphs into the network is both impractical and unfeasible. 
To circumvent this, we adopt a global attention mechanism, augmented 
by a memory strategy reminiscent of those employed in time-series 
networks. After the node features are processed by the GCNs, the 
graph is assigned a new feature vector h2, as shown in the equation. To 
learn and store historical global information in all graphs ever inputted, 
we use a GRU architecture. The current pooled feature vector h2 and the 
previous memory vector m(t− 1) ∈ RF are used as inputs to the GRU. 
Formally, let r(t), z(t), n(t) be the reset gate, update gate and output vector 
of the GRU for the t-th input stage of the memory module. The following 
equations summarize the proposed global attention mechanism with 
memory strategy: 

r(t) = σ
(
h2Wrh + brh +m(t− 1)Wrh + brm

)
(6)  

z(t) = σ
(
h2Wzh + bzh +m(t− 1)Wzm + bzm

)
(7)  

n(t) = tanh
(
h2Wnh + bnh + r(t) ⊙ m(t− 1)Wnm + bnm

)
(8)  

h(t)
3 =

(
1 − z(t)

)
⊙ m(t− 1) + z(t) ⊙ n(t) (9)  

where h(t)
3 is the global feature vector obtained by the memory module, 

⊙ denotes Hadamard product, all the W denote learnable weight pa-
rameters, and all the b denote learnable bias parameters, the sigmoid 
function σ(x) = 1

1+exp(− x) and the hyperbolic tangent function tanh(x) =
exp(x)− exp(− x)
exp(x)+exp(− x) were employed as activation functions. The update formula 
for the memory vector is represented as: 

αi,j =
exp
(

LeakyReLU
([

h(t)
3 i‖m(t)

j

]
W1

))

∑F
k=1exp

(
LeakyReLU

([
h(t)

3 i‖m(t)
k

]
W1

)) (10)  

m(t+1) = σ
(

m(t) +α(t)h(t)
3 W

)
(11)  

where αi,j denotes the attention score of the i-th feature of the global 
memory feature m to the j-th feature of the global feature vector h(t)

3 , 
W1 ∈ R2F×F denotes the learnable weight parameter in the vector h(t)

3 
update process. The utilization of GRU for modeling the temporal dy-
namics of global information proves highly effective in encoding in-
terdependencies within the input graphs. This approach adeptly 
captures the evolving dynamics of the input graphs over time. Specif-
ically, the GRU operates by updating a memory vector, drawing from the 
current input feature vector as well as the preceding memory vector, and 
subsequently generates a fresh memory vector for the subsequent input 

step. This memory vector serves as the repository for global information 
derived from all input graphs, which is then seamlessly integrated into 
the ultimate feature representation essential for classification. In sce-
narios where tasks involve multiple distinct ground-truth label cate-
gories, a multi-head GRU mechanism may be employed. To 
accommodate n mutually exclusive ground-truth label types, a parallel 
stacked GRU architecture with n − 1 GRU cells is introduced into the 
model. This design facilitates the modeling of various label categories, 
ensuring the model’s capacity to effectively handle the diverse aspects of 
the data. 

Partial key message learning 
To mitigate the risk of over-smoothing, we incorporate a Partial Key 

Message Learning module into our model, akin to a residual block. We 
use two learnable weight matrices to aggregate the overall feature 
vector h2 and the node feature vector N ∈ RF to obtain a fused feature 
vector h3. Importantly, the weight matrices in this layer are designed to 
learn attention mechanisms over the dimensions of the feature vectors, 
in order to emphasize certain dimensions that are deemed more infor-
mative for the classification task. Formally, let h(l+1)

p denotes the vector 
generated by the Partial Key Message Learning module. The process can 
be presented as: 

h(l+1)
p = ReLU

(
NW(l)

2 + h2W(l)
3

)
(12)  

where ReLU(⋅) is a piece-wise activation function ReLU(x) = max(0,x), 
W(l)

2 is the partial key message attention weight matrix, and W(l)
3 is the 

graph overall feature vector attention weight matrix. In strategy two, we 
aggregate the overall feature vector h2 of the graph and the feature 
vectors of the key nodes in the graph by means of full connectivity, 
where the learnable weight matrices are applied to the learning of the 
attention of each dimension of the features, as a way to improve the 
attention to the information of the key nodes and obtain features with 
more usable values. 

Message fusion 

Finally, we aggregate the feature vector of the global attention 
mechanism obtained in the Global Attention with Memory module and 
the feature vector of the partial learning mechanism obtained in the 
Partial Key Message Learning module to obtain as comprehensive 
feature tensor for our method. Let C be the number of classes of ground- 
truth labels, O(l+m) be the output of the entire network: 

O(l+m) = softmax
(

FC
(

ReLU
([

h(l)
3 ‖h(l)

p

])))
(13)  

where ‖ denotes the concatenation operation, FC(⋅) denotes multi-layer 
fully connected network function, m is the number of layers in the multi- 
layer fully connected layer network. In the end, while a set of training 
graph pairs was inputted for training, the final layer output tensor 
OϵR|D| ×CO ∈ R|D| ×C is compared against the ground-truth labels using 
the following cross-entropy loss function: 

L = −
1
|D|

∑D

i=1

∑C

j=1
yijlogŷij (14)  

where D is the set of training graph pairs, |D| denotes the total number 
of graphs contained in D, yij is the ground-truth label of the i-th graph for 
class j, and ŷij is the predicted probability of the i-th graph belonging to 
class j. The cross-entropy loss measures the difference between the 
predicted probability distribution and the ground-truth distribution, and 
is commonly used as the objective function for training our model. 
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Experiments 

In this section, we present a comprehensive application of our 
method on a real-world dataset, offering a detailed description of our 
experimental settings. We meticulously showcase the experimental re-
sults obtained from our three proposed models for detecting fake news. 
Furthermore, we conduct a comparative analysis with state-of-the-art 
baseline models, aiming to demonstrate the superior performance and 
effectiveness of our approach in tackling this critical challenge. Ablation 
studies are also used to validate the effectiveness of the two strategies in 
our approach. The robustness and reliability of our method are thor-
oughly examined, providing valuable insights and contributing to the 
advancement of fake news detection research. 

Experimental dataset and experimental setup 

The experimental datasets encompass the Weibo dataset, a self-built 
Chinese corpus dataset that underwent pre-trained coding and embed-
ding, and two widely recognized benchmark English corpus data-
sets—the Politifact dataset and the Gossipcop dataset. The three datasets 
have similar structural designs. Edges within the news propagation 
networks are established based on user behaviors, encompassing actions 
like retweeting, commenting on news, and user interactions, and such 
relationships can be crawled from official websites. Within the Chinese 
dataset, there are networks of false and real news dissemination on the 
Weibo platform. The news ground-truth labels are meticulously crafted 
based on fact-checked data supplied by the Sina Community Manage-
ment Center, an official organization within the Weibo ecosystem. The 
English corpus datasets1 (Dou et al., 2021) include fake news and real 
news propagation networks on Twitter, built from fact-checked infor-
mation from Politifact and Gossipcop. Notably, these datasets are 
distinct from one another and contain news items that are not shared 
between them. The news retweet graph was originally extracted from 
FakeNewsNet2 (Shu et al., 2017). The dataset creators crawled nearly 20 
million historical tweets from users involved in the propagation of fake 
news on Twitter to generate the node characteristics for the dataset. The 
statistical overview of datasets is shown below: 

As previously mentioned in the concept of news propagation net-
works, each graph of the dataset is a hierarchical tree-structured graph 
that includes a root node representing news and leaf nodes representing 
social media users who retweeted the root news, and the edges of the 
graph represent the act of tweeting and retweeting. Each graph in the 
dataset represents a news event where there is no direct relationship 
between events. The raw news data includes news titles and news 
context, and the raw user data includes user profiles and user tweet 
context. In English datasets, the raw data were encoded using pre- 
trained word embeddings, BERT3 and spaCy4 word2vec (Mikolov 
et al., 2013). The 10-dimensional user profile feature was encoded using 
word2vec. The 310-dimensional content feature was composed of a 
300-dimensional user comment word2vec embedding concatenated 
with the 10-dimensional profile feature. The 768-dimensional content 
feature was generated using the pre-trained BERT model to encode the 
user profiles and user comments. Unlike the English corpus datasets, the 
Weibo dataset uses the Chinese corpus pre-trained word embeddings, 
Chinese corpus BERT and Chinese corpus word2vec,5 and the user 
profile feature in the Weibo dataset is 14-dimensional. Similarly, the 
314-dimensional content feature was composed of a 300-dimensional 
user comment word2vec embedding concatenated with the 14-dimen-
sional profile feature. 

We have implemented all models using the PyTorch6 deep learning 
framework in Python 3.10 and the PyTorch-Geometric (PyG)7 package 
for implementing GNNs models. A unified graph embedding size of 128, 
a batch size of 128, and L2 regularization weight of 0.001 were used for 
all models. According to the different convolution methods of graph 
convolutional networks, we have used different learning rates. Specif-
ically, we set the learning rate to 0.001 for GAT and GCN, while the 
learning rate for the GANM under GraphSAGE convolution is set to 
0.005. To prevent overfitting, we applied early stopping with patience of 
10 epochs during the training process. Further hyperparameters for each 
model can be found in the code repository, which is publicly available on 
request for replication and extension of our work. 

Experimental performance evaluation 

According to our proposed approach, three models were generated 
by combining three classical graph neural convolutional network 
methods, named GAT-GANM, SAGE-GANM, and GCN-GANM. We 
evaluated the performance of our models on the dataset using two 
commonly used evaluation metrics: test accuracy score and F1 score. 
The test Accuracy (Acc.) score measures the proportion of correctly 
classified instances, while the F1 score considers both precision and 
recall. Specifically, we calculated the F1 score as the harmonic mean of 
precision and recall. Furthermore, we employed statistical tests to 
ascertain the significance of our model’s outcomes. Our experimental 
results demonstrate the effectiveness of our proposed approach in 
detecting fake news, achieving prominent accuracy and F1 scores, as 
shown in Table 2. 

The results shown in Table 2 indicate that the GCN-GANM model 
exhibits the most prominent overall performance across all datasets. 
Conversely, the SAGE-GANM model performs exceptionally well on the 
Weibo dataset, particularly when utilizing word2vec and BERT encod-
ing methods. In contrast, the GAT-GANM model showcases relatively 
lower performance across all three datasets and encoding methods. 
Comparative analysis of the employed methods underscores the supe-
riority of graph convolution operations utilizing GCN and SAGE over 
GAT across all experimental datasets. The observed outcomes can be 
explained by comparing the performance of the GCN, SAGE, and GAT 
models in fake news detection. 

In terms of model architecture, the performance of the GAT model is 
relatively lower, potentially due to its emphasis on local inter-node 
dependencies. However, in this task, global inter-node dependencies 
among nodes might be crucial. GAT’s sensitivity to the distances be-
tween nodes could limit its capability to capture long-distance de-
pendencies, thereby affecting its performance. The outstanding 
performance of the SAGE-GANM model on the Weibo dataset might be 
attributed to its inductive learning ability, which allows it to capture 

Table 1 
General statistics of dataset.  

Dataset Politifact Gossipcop Weibo 

General Statistics #Total Graphs 314 5464 4664 
#Fake News 157 2732 2313 
#Total Nodes 41,054 314,262 2,856,741 
#Total Edges 40,740 308,798 2,852,077 
#Avg. Nodes per 
Graph 

131 58 613 

#Avg. Edges per 
Graph 

130 57 612 

Encoding Feature 
Dimension 

Profile 10 10 14 
word2vec 310 310 314 
BERT 768 768 768  

1 https://github.com/safe-graph/GNN-FakeNews.  
2 https://github.com/KaiDMML/FakeNewsNet.  
3 https://github.com/jina-ai/clip-as-service.  
4 https://spacy.io/models/en#en_core_web_lg.  
5 https://spacy.io/models/zh#zh_core_web_lg. 

6 https://pytorch.org/.  
7 https://pyg.org/. 
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global information from local neighbors. Furthermore, SAGE’s scal-
ability advantage of not requiring the maintenance of the entire graph 
for operation proves beneficial, particularly for larger networks. The 
Weibo dataset features significantly larger and more intricate graphs 
compared to the Politifact and Gossipcop datasets, as illustrated in 
Table 1. The exceptional performance of the GCN model on the English 
corpus datasets could stem from its capacity to capture structural in-
formation within the graph. Proficiency in modeling propagation pat-
terns and user relationships could enhance GCN’s modeling capability. 
Moreover, GCN’s flexibility in integrating propagation patterns and user 
information contribute to better distinguishing between true and false 
information. In summary, the varied nature of datasets and task re-
quirements leads to the diverse performance of graph neural network 
models. GCN and SAGE excel on different datasets, while GAT may 
struggle to effectively capture global dependencies. Therefore, when 
selecting a model, careful consideration of the specific task context and 
performance metrics is essential. To visualize the training process of our 

three proposed models, we present a comprehensive figure containing 
nine subplots. Each subplot corresponds to a specific training epoch 
represented along the x-axis, showcasing the corresponding loss and F1 
score, as shown in Fig. 3. 

Fig. 3 provides a comprehensive depiction of the training process, 
highlighting the overall stability and efficiency of each model. In terms 
of convergence speed and F1 score for fake news detection, BERT 
encoding outperforms the other two encoding methods. Moreover, in 
terms of feature embedding effectiveness, training stability, and effi-
ciency, the GCN-GANM model surpasses both the GAT-GANM and 
SAGE-GANM models. Notably, the GCN-GANM model exhibits superior 
performance, both in terms of training effectiveness and performance, 
on the Gossipcop dataset compared to the Politifact dataset. This 
discrepancy can be attributed to inherent differences in the dataset 
characteristics, resulting in variations in the training processes of the 
same model. To further showcase the effectiveness of our approach to 
feature extraction, we employed the GCN-GANM model with weight 

Table 2 
Performance of experimental results of our approaches for fake news detection.  

Model Encoding Method Politifact Gossipcop Weibo 

Acc. F1 Acc. F1 Acc. F1 

GAT-GANM Profile 0.7849 0.7959 0.8509 0.8468 0.8713 0.8719  
word2vec 0.8387 0.8544 0.9474 0.9483 0.9617 0.9615  
BERT 0.8495 0.8511 0.9561 0.9550 0.9602 0.9604 

SAGE-GANM Profile 0.7527 0.7677 0.8772 0.8852 0.9225 0.9222  
word2vec 0.8602 0.8538 0.9737** 0.9739** 0.9779 0.9779  
BERT 0.8622*** 0.8687** 0.9737 0.9735 0.9835** 0.9834*** 

GCN-GANM Profile 0.7849 0.8039 0.8684 0.8649 0.9216 0.9218  
word2vec 0.8602 0.8660 0.9649 0.9655 0.9715 0.9716  
BERT 0.8602* 0.8738** 0.9825** 0.9825** 0.9804** 0.9805** 

# The best results are highlighted in bold, and the second-best result is highlighted in underline. * denotes statistically significant under the t-test (* p ≤ 0.05, * * p ≤
0.01, * * * p ≤ 0.001). 

Fig. 3. Performance curves for nine unique training processes with smoothing trends. The colors represent different datasets, and the solid and dashed lines represent 
the loss and F1 scores of the training processes. The curves for each training process were smoothed, and the curves were transparent before smoothing (transparency 
α = 0.5). The x-axis label for each subplot is the encoding method, and the y-axis label is the model name. 
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parameters initialized randomly without undergoing any gradient 
descent optimization. Subsequently, the distribution of graphs was 
visualized using t-SNE visualization within one test batch, as presented 
in Fig. 4. 

In Fig. 4, subplots (a), (b), and (c) illustrate the classification efficacy 
of real and fake news detection under random parameters. In this sce-
nario, the original features are generated via pre-trained word embed-
dings. The t-SNE visualizations substantiate that discernible distinctions 
exist in the feature information integrated across various datasets. 
Particularly noteworthy is the observation that the Politifact dataset 
poses a relatively greater challenge in classification performance 
compared to both the Gossipcop and Weibo datasets, even when uti-
lizing an exceptional pre-trained word embedding such as BERT. This 
challenge arises due to the inherent difficulty in extracting sufficiently 
informative data from the relatively constrained sample size of the 
Politifact dataset. These findings empirically underscore the inherent 
diversity inherent in the three datasets. 

In contradistinction, subplots (d), (e), and (f) exhibit marked en-
hancements in the classification performance across all three datasets 
when contrasted with the outcomes under random parameters during 
the model parameter training phase. Notably, the Weibo dataset ach-
ieves impressive classification performance with outstanding classifi-
cation quality for both true and false news after model parameter 
training, as shown in subplot (f). This pronounced effect can be attrib-
uted to the fact that the Weibo dataset has a higher average number of 
relevant users per news item and a higher correlation between the users 
and the news items compared to the other datasets. This augmented 
user-news interaction allows the model to comprehensively assimilate 
exogenous information during the training process. 

Comparison with baseline methods 

The comparison with baseline methods encompasses two primary 

categories: traditional machine learning algorithms for clustering and 
deep learning algorithms based on neural networks. The first type of 
baseline methods includes four traditional machine learning approaches 
for classification tasks: Naive Bayes (NB), Random Forest (RF), Support 
Vector Machine (SVM), and Passive Aggressive (PA). We employ the 
scikit-learn8 library in Python to implement these approaches. For the 
textual raw data encoding of news, we use the NLTK9 library and the 
tokenizer module of the sikit-learn library for the encoding process. 

The second type of baseline method includes neural network-based 
deep learning approaches:  

• word2vec-MLP: The word2vec-MLP method employs word2vec 
encoding and a Multi-Layer Perceptron (MLP) model for feature 
embedding to construct a classification task framework for fake news 
detection. The MLP is a fundamental deep learning method that has 
shown excellent performance in various fields. However, due to the 
structural limitations of the model, MLP cannot aggregate social 
network structure information. 

• Text-CNN: The Text-CNN (Kim, 2014) uses CNN for text classifica-
tion, which applies a novel CNN architecture called dynamic k-max 
pooling and has demonstrated outstanding performance in text 
classification tasks. 

• HPFN10: The HPFN (Shu et al., 2020b) involves two stages of prop-
agation: global and local propagation, which are performed hierar-
chically to capture the global and local semantic features of the news 
articles. The model also employs a gating mechanism to selectively 
propagate relevant information during the global and local propa-
gation stages. 

Fig. 4. t-SNE visualization of the datasets with random parameters and trained parameters by using GCN-GANM with BERT encoding. Subfigures (a), (b) and (c) 
show the t-SNE visualizations of some samples in the three datasets before model training. Subfigures (d), (e) and (f) show the t-SNE visualizations of some samples in 
the three datasets after model training. 

8 https://scikit-learn.org/.  
9 https://www.nltk.org/.  

10 https://github.com/mdepak/fake-news-propagation. 
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• dEFEND11: The dEFEND (Shu et al., 2019b) approach employs a 
BERT encoder and attention mechanism to extract features from 
article and headline text, which are inputted to an interpretable 
classifier to predict article authenticity. The model not only outputs 
predictions but also provides explanations for its decisions to help 
users better understand the decision-making process. 

• GCNFN12: The GCNFN (Monti et al., 2019) method is a novel geo-
metric deep learning-based approach for fake news detection. It 
converts the fake news detection problem on social media to a graph 
classification problem and extracts user profiles on social media 
using GCN, which establishes a graph representation with multiple 
information sources. 

• UPFD13: The UPFD (Dou et al., 2021) approach utilizes NLP tech-
niques to encode the news context and user context and obtain 
feature tensors for both news and users. GCNs are applied to inte-
grate both endogenous and exogenous user information and learn 
joint user engagement embedding.  

• Bi-GCN14: The Bi-GCN (Bian et al., 2020) uses a parallel 
bi-directional GCN structure to bi-directionally learn about the 
propagation and dispersion of information in the community, 
achieving excellent performance that has been recognized in many 
studies and used as a baseline method comparison.  

• EBGCN: EBGCN (Wei et al., 2021) adopts the bidirectional graph 
convolutional structure introduced by Bi-GCN as its foundational 
framework. However, it further innovates by integrating Bayesian 
probabilistic content to infer edge weights between nodes. 

Our approach achieves promising results on the three datasets. The 
comparison with baseline methods of experimental results is shown in 
Table 3. 

Table 3 presents a comprehensive performance evaluation of our 
proposed method in comparison to various comparative methods across 
the Politifact, Gossipcop, and Weibo datasets. Our method clearly sur-
passes the performance of other baseline methods, establishing itself as 
the leading approach in fake news detection. Notably, GANM, when 
integrated with the GCN framework for convolution operation, emerges 
as the top-performing configuration, demonstrating exceptional overall 
efficacy. 

First, the baseline algorithm underscores the superiority of deep 
learning over traditional machine learning approaches that rely on 

manually crafted features. Deep learning methods exhibit significantly 
better performance, underscoring their capacity to acquire high-level 
representations of news, enabling the capture of effective features. 
This reiterates the critical importance of deep learning in the realm of 
fake news detection. 

Second, the GNNs-based approaches, tailored to leverage graph- 
structured data, outperform the more generalized approach. This 
outcome emphasizes the inherent advantages of employing graph- 
structured data in extracting and comprehending the propagation pat-
terns of false news. It accentuates the significance of incorporating 
network structure considerations when addressing the task of fake news 
detection. 

Finally, the proposed method consistently outperforms other deep 
learning techniques across all performance metrics. This observation 
underscores the effectiveness of incorporating the proposed Global 
Attention module with Memory and Partial Key Message Learning 
module into the fake news detection process. Previous state-of-the-art 
methods often neglect the global information that permeates the 
entire graph, thereby overlooking a vital structural feature of fake news 
dispersion. The integration of these modules empowers our approach to 
capture a comprehensive high-level representation of fake news, 
resulting in significantly improved fake news detection performance. 

Ablation study 

In the ablation study, a series of experiments were conducted to 
comprehensively analyze the influence of various components or mod-
ules within our proposed model. The primary objective was to system-
atically eliminate or adjust specific segments of the model architecture 
to gauge their individual contributions to the overall performance. 
Through a comparative analysis of the outcomes obtained from these 
altered model versions against the performance of the complete GANM 
model, valuable insights regarding the efficacy and significance of each 
component were obtained. The ablation experiments encompassed the 
following variations:  

• Variant 1: We established a variant of our GANM model by excluding 
two key components: The Global Attention Module with Memory 
and the Partial Key Message Learning component. This stripped- 
down variant consists solely of the graph convolution operation 
and the fully connected layers, serving as a control group for our 
study. By adopting this approach, we aim to dissect and evaluate the 
individual impacts of the aforementioned strategies that we have 
incorporated.  

• Variant 2: The Variant 2 model introduces a modification by 
excluding the Partial key message Learning component within the 

Table 3 
Comparison with baseline methods of experimental results.  

Model Feature source Politifact Gossipcop Weibo 

Acc. F1 Acc. F1 Acc. F1 

NB News Only 0.7240 0.6980 0.8314 0.8227 0.8447 0.8456 
RF News only 0.7460 0.7427 0.8176 0.8333 0.8545 0.8550 
SVM News only 0.7495 0.7815 0.8379 0.8621 0.8474 0.8467 
PA News only 0.7682 0.7636 0.8571 0.8576 0.8778 0.8770 
BERT-MLP News only 0.7647 0.7636 0.8469 0.8711 0.9210 0.9212 
text-CNN News only 0.7759 0.8038 0.8530 0.8738 0.9087 0.9093 
HPFN Social context 0.8430 0.8430 0.8690 0.8710 0.9170 0.9172 
dEFEND News+user+network 0.8080 0.7532 0.9041 0.9283 0.9558 0.9560 
GCNFN News+user+graph 0.8316 0.8356 0.9638 0.9509 0.9528 0.9530 
UPFD News+user+graph 0.8462 0.8465 0.9723 0.9722 0.9755 0.9754 
Bi-GCN News+user+graph 0.8190 0.8113 0.9589 0.9590 0.9614 0.9613 
EBGCN News+user+graph 0.8281 0.8304 0.9412 0.9406 0.9638 0.9633 
GAT-GANM (ours) News+user+graph 0.8387 0.8544 0.9561 0.9550 0.9617 0.9615 
SAGE-GANM (ours) News+user+graph 0.8622 0.8687 0.9737 0.9739 0.9835 0.9834 
GCN-GANM (ours) News+user+graph 0.8602 0.8738 0.9825 0.9825 0.9804 0.9805 

The best results are highlighted in bold, and the second best result is highlighted in underline. 

11 https://github.com/heeyjunaid/dEFEND-Pytorch.  
12 https://github.com/YingtongDou/GCNN.  
13 https://github.com/safe-graph/GNN-FakeNews.  
14 https://github.com/TianBian95/BiGCN. 
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GANM model. In this configuration, the embedding proceeds 
through the Global Memory Module before progressing to the sub-
sequent stage of the fully connected layers. This sequence of opera-
tions takes place following the execution of the graph convolution 
operation and global pooling.  

• Variant 3: In this specific variant model, we take an alternative 
approach by removing the Global Attention Module with Memory 
from the architectural design. In this scenario, the hidden state 
tensor output generated by the GCNs module directly interfaces with 
the Partial Key Message Learning component. This occurs subsequent 
to the processes of global pooling. 

All the outcomes derived from the ablation experiments exhibit 
statistical significance, with a significance level of p ≤ 0.05, as deter-
mined by the t-test. Table 4 provides a comprehensive overview of the 
outcomes obtained from the ablation experiments, presenting a detailed 
account of how the variants perform across diverse encoding methods 

(Profile, word2vec, and BERT). Notably, Variant 2 emerges as the 
frontrunner among the three variants in terms of overall performance. 
This outcome substantiates the pivotal role played by the Global Mem-
ory Module (referred to as the Global Attention Module with Memory) 
within the GANM architecture. The Global Memory Module is evidently 
instrumental in facilitating the grasp of structural information and 
enhancing the learning capabilities of the model. Significantly, the in-
clusion of the Global Memory Module ensures that the model avoids 
significant overfitting issues at later training stages. This prevents the 
occurrence of oscillating or declining accuracy and F1 score curves 
shown in Fig. 5, a phenomenon observed in comparison to variant 1 and 
variant 3, where this module is absent. The superior performance of 
variant 2 underscores the module’s effectiveness in maintaining model 
stability throughout the learning process. Turning to Variant 3, which 
incorporates the Partial Key Message Learning module, notable trends 
emerge. This module exhibits commendable performance in the initial 
and early stages of the learning process. Its robust key message learning 

Table 4 
Comparison of results of ablation experiments.  

Encoding Variant Architecture module Politifact Gossipcop Weibo 

GCNs Module Global Memory Module Partial Message Learning Module Acc. F1 Acc. F1 Acc. F1 

Profile Variant1 ✔ ⨯ ⨯ 0.7419 0.7736 0.8158 0.8235 0.8866 0.8791  
Variant2 ✔ ✔ ⨯ 0.7957 0.8119 0.8509 0.8350 0.9175 0.9167  
Variant3 ✔ ⨯ ✔ 0.7634 0.7843 0.8421 0.8269 0.8969 0.8936  
GANM ✔ ✔ ✔ 0.7849 0.8039 0.8772 0.8852 0.9225 0.9222 

word2vec Variant1 ✔ ⨯ ✔ 0.7634 0.7708 0.9035 0.9027 0.9175 0.9130  
Variant2 ✔ ✔ ⨯ 0.8280 0.8400 0.9474 0.9474 0.9545 0.9545  
Variant3 ⨯ ✔ ⨯ 0.7849 0.7778 0.9298 0.9298 0.9320 0.9322  
GANM ✔ ✔ ✔ 0.8602 0.8660 0.9737 0.9739 0.9779 0.9779 

BERT Variant1 ✔ ⨯ ✔ 0.8280 0.8367 0.9123 0.9123 0.9278 0.9231  
Variant2 ✔ ✔ ⨯ 0.8495 0.8542 0.9474 0.9474 0.9620 0.9621  
Variant3 ⨯ ✔ ⨯ 0.8387 0.8421 0.9211 0.9204 0.9393 0.9394  
GANM ✔ ✔ ✔ 0.8602 0.8738 0.9825 0.9825 0.9835 0.9834  

Fig. 5. Performance of the ablation experiment training process. The dashed curve corresponds to the variant model, while the solid curve represents the complete 
GANM model. The y-axis tick value denotes the F1 score, while the x-axis represents the epoch. The x-label specifies the coding method used, and the y-axis label 
indicates the dataset employed in the experiment. 
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capacity enables rapid parameter updates, resulting in relatively prompt 
convergence to a favorable solution domain. However, this advantage 
begins to wane as the training progresses. The model encounters limi-
tations in pushing performance further beyond a certain threshold, 
eventually leading to some degree of overfitting. Consequently, the test 
set accuracy of the model is compromised, showcasing its inability to 
maintain high accuracy levels. 

The outcomes stemming from the ablation experiments unequivo-
cally affirm the pivotal significance of the Global Memory Module 
within the GANM framework. This component distinctly amplifies the 
model’s grasp of structural intricacies and its cognitive acuity in 
acquiring knowledge. Concurrently, the experiments shed light on the 
nuanced influence of the Partial Key Message Learning module, eluci-
dating its dual impact on initial performance and susceptibility to 
overfitting tendencies. It becomes evident that both of these components 
constitute indispensable pillars underpinning the efficacy of GANM. 
Their symbiotic synergy manifests as a formidable amalgamation, 
endowing the model with the prowess to capture intricate graph dy-
namics and bolster its performance capabilities. In this intricate tapestry 
of interrelated modules, both the global memory module and the partial 
key information learning module emerge as indispensable assets, coa-
lescing to empower GANM with multifaceted capabilities. 

Conclusion 

The proposed approach is designed to detect fake news in complex 
graph-structured data through the application of various techniques, 
such as deep learning, graph neural networks, and temporal modeling. 
The approach is capable of efficiently processing graphs with multiple 
modalities, attributes, and features while also identifying key nodes and 
subgroups that can improve classification accuracy. Therefore, the 
approach demonstrates remarkable robustness and superior perfor-
mance on real-world datasets by utilizing these techniques. In addition, 
the approach has broad applications beyond fake news detection, 
including classification and prediction tasks for multiple graphs with 
critical root nodes or subgroups as well as graph sequences with time- 
varying properties. By combining powerful computational methods 
with detailed graph analysis, this approach offers an effective tool for 
addressing complex data analysis challenges. In the future, a promising 
direction is the ongoing refinement of the global memory module, 
potentially integrating adaptive mechanisms to accommodate a diverse 
array of graph structures. Furthermore, the pursuit of improving the 
method’s scalability to effectively manage larger and more dynamic 
datasets remains an enticing endeavor. 
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